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Abstract

The existence or non-existence of a Hadamard difference set is known for all but one of the
56,092 groups of order 28. We use a search method to classify the final group of order 256,
namely G = 〈x, y : x64 = y4 = 1, yx = x−17y〉. We take the quotient of G by the normal
cyclic subgroup 〈x32〉 and work with a homomorphic image of the putative difference set D in
H = G/〈x32〉. We represent this image as a 4×32 array whose elements lie in {0, 1, 2}. A family
of potential images of D in H was provided to us at the outset of the USRA project. The
problem becomes to lift the image back to G to construct the difference set. In doing so, we
must determine which elements (g or gx32) contributed to 1s in the image. This leads to a search
of size 264 for each potential image, which is computationally infeasible. However, we constrain
the search by imposing structure on the image. Using a representation theoretic approach we
map the generators x, y of the group G to 4×4 complex matrices of primitive 64th roots of unity
so that the search for D becomes a problem of controlling the magnitude of several sums of
roots of unity simultaneously. The search thereby succeeds in finding three distinct difference
sets in G. Subsequently we explain these three solutions using negacyclic Golay pairs over the
alphabet {−1, 0, 1}. Using this understanding we develop a recursive construction method for
suitable negacyclic Golay pairs and build a difference set in G by hand, beginning with a trivial
length 1 pair.
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1 Introduction

The project to classify which of the 267 groups of order 26 contain difference sets was completed in
1993. The final group was classified by Robert Liebler and Ken Smith, after which an undertaking
was proposed to extend this classification to all groups of order 28. There has since been a collective
effort, using various construction methods and two non-existence theorems, to determine whether
or not each of these 56,092 groups contains a difference set.

In September 2014 Jim Davis gave a talk titled “The Final Four,” [2] which outlined the progress
thus far and specified the final four groups for which this question was still unanswered. In March
2016 my supervisor Jonathan Jedwab attended a small workshop at which he learned that only
one group remained, namely SmallGroup(256, 536) [6]. My summer project was then to classify
this final group. This group closely resembles the Modular group of order 64 which was the last of
the order 64 groups to be classified in 1993 by Liebler and Smith. So we approached the problem
in much the same way, using representation theory and in collaboration with Jim Davis and Ken
Smith.

I began this project by learning the basics of group theory along with some knowledge of
representation theory and how it applies to our method. The project then evolved over the following
weeks from identifying plausible constraints to reduce the size of the search space, to implementing
the search and finding three solutions, to examining and understanding the solutions and finally
to developing a recursive construction method for building sequences, allowing us to construct
numerous Hadamard difference sets in SmallGroup(256,536) by hand.

2 Background

The group of interest to us is SmallGroup(256,536), namely

G = Z64 o -17Z4 = 〈x, y : x64 = y4 = 1, yx = x−17y〉

Definition 1. A (v, k, λ) - difference set D in a group G of order v is a subset of size k which
has the property that the multiset {xy−1 : x, y ∈ D,x 6= y} contains each nonidentity element of G
exactly λ times.

For our purposes it is convenient to refer to the difference set D as an element of the group ring
Z[G] with coefficients in {0, 1} as follows:

D =
∑
d∈D

d,

(where D in the summation is the subset of G and D on the left hand side is the corresponding
group ring element). We define

D(−1) =
∑
d∈D

d−1,

and then the difference set condition becomes
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DD(−1) = (k − λ) · 1G + λ ·G in Z[G]. (1)

A difference set D in a group of order 256 must have parameters

(v, k, λ) = (256, 120, 56) (2)

[1, p.85, Thm 3.17], belonging to the Hadamard family of difference sets, and so satisfies

DD(−1) = 64 · 1G + 56 ·G in Z[G].

We define the natural homomorphism ρ : G → G/〈x32〉 = H. This maps pairs of distinct
elements g, gx32 in G to elements g〈x32〉 in H where

H ' 〈x, y : x32 = y4 = 1, yx = x15y〉.

We can also think about the image of D in H, namely ρ(D) = D/〈x32〉. Coefficients in ρ(D)
(viewed as an element of the group ring Z[H]) are bounded above by |〈x32〉|= 2, and ρ(D) must
satisfy the condition

ρ(D)ρ(D)(−1) = (k − λ) · 1H + 2λ ·H in Z[H].

With the parameters defined in (2) this becomes

ρ(D)ρ(D)(−1) = 64 · 1H + 112 ·H in Z[H]. (3)

Coefficients in ρ(D) are in {0, 1, 2}. We can derive counts (m0,m1,m2) for the number of
occurrences of each coefficient in ρ(D) using the following three equations:

m0 +m1 +m2 = |H| = 128,

0 ·m0 + 1 ·m1 + 2 ·m2 = |D| = 120,

02 ·m0 + 12 ·m1 + 22 ·m2+ = 64 + 112 = 176.

The first two equations come directly from the definition of mj and the parameters given in
(2). The third equation is given by the coefficient of the identity element in (3): an element g in
ρ(D), having coefficient 1, contributes gg−1 = 1 to the identity element in (3), whereas an element
2g in ρ(D), having coefficient 2, contributes (g + g)(g−1 + g−1) = 4.

Solving these three linear equations in three unknowns gives

(m0,m1,m2) = (36, 64, 28). (4)

ρ is a 2-to-1 mapping, whereby each subset of 2 elements in G is mapped to a single element in
H. Since elements in D have coefficients in {0, 1}, reversing the quotient map is ambiguous only
for elements in ρ(D) which have a coefficient of 1, as follows:

3



count coefficient in ρ(D) coefficient in D

36 0 7→ {0, 0}

64 1 7→ {0, 1}
or {1, 0}

28 2 7→ {1, 1}

Every possible image ρ(D) contains m1 = 64 elements with a coefficient of 1. Given a possible
image ρ(D) of a difference set D in G, the size of a brute force search to determine whether any
subset D of G having the image ρ(D) is actually a difference set in G is therefore 264 ≈ 2× 1019.

3 Choosing a suitable image A = ρ(D) in H

A family of potential images A = ρ(D) in H of a difference set D in G was provided to us by
Jim Davis and Ken Smith [5]. It is worth spending time examining this family, as it leads to the
development of one of our later constraints. The family is generated by the following five parameter
function.

A(g0,g1, g2, g3, g4) =

(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 + x16)(1 + y)(1 + y2)

+ (1− x8)(1 + y2)(1 + x16)

− g1(1 + x8)(1 + y2)(1 + x16)

+ g0(1− x8)(1− y2)(1 + x16)

− g0g2(1 + x8)(1− y2)(1 + x16)

+ g4(1 + x8)(1 + x8y)(1− y2)(1− x16)
+ g4g3(1 + x8)(1 + xy)(1 + y2)(1− x16), where g0, g1, g2, g3, g4 ∈ H.

(5)

The term (1 + x)(1 + x2)(1 + x4)(1 + x8)(1 + x16)(1 + y)(1 + y2) represents every element in
H. The addition of the term (1 − x8)(1 + y2)(1 + x16) removes 4 of these elements and repeats 4
other elements. We regard the sum of these two terms (in light shading above) as a template which
we write in (6) below as a 4×32 coefficient array: entry k in array position (i, j) corresponds to a
contribution kxjyi in the group ring element ρ(D).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(6)
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The five terms
−(1 + x8)(1 + y2)(1 + x16),

(1− x8)(1− y2)(1 + x16),
−(1 + x8)(1− y2)(1 + x16),

(1 + x8)(1 + x8y)(1− y2)(1− x16), and
(1 + x8)(1 + xy)(1 + y2)(1− x16)

represent five sparse 4×32 arrays with nonzero entries in {−1, 1}. We think of each of the quantities
g1, g0, g0g2, g4, g4g3 as shifting the positions of the nonzero entries within the corresponding 4×32
array. Provided the coefficient counts for 0s, 1s and 2s in A are as specified in (4), the image A
given by (5) is guaranteed to satisfy the group ring equation (3) with ρ(D) = A. This condition
on the coefficient counts translates to ensuring that the nonzero elements of the 5 shifted sparse
arrays do not overlap among themselves and do not fall on the 8 entries of the template that are
not equal to 1. Direct verification shows there are millions choices of g0, g1, g2, g3, g4 for which these
conditions hold (see Section 5).

For example, the coefficient array corresponding to g0(1− x8)(1− y2)(1 + x16), where g0 = x4y
and +, − represent 1 and -1 respectively, is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 + 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 − 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 − 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 − 0 0 0 0 0 0 0 + 0 0 0

and the following image A1, given by the parameters {g0, g1, g2, g3, g4} = {y, x2, x5, x2, x3}, satisfies
(3):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 2 1 0 2 1 2 1 1 0 1 0 2 1 2 1 1 2 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1
1 2 1 1 0 1 0 2 1 0 1 1 2 1 0 2 1 2 1 1 2 1 0 0 1 0 1 1 0 1 0 0 1
2 2 1 0 0 1 2 1 1 0 1 0 0 1 2 1 1 2 1 0 2 1 0 1 1 0 1 0 2 1 0 1 1
3 0 1 1 2 1 2 2 1 2 1 1 0 1 2 2 1 0 1 1 0 1 2 0 1 2 1 1 2 1 2 0 1

.

(7)

We observe that any resulting array A = (ai,j) for which these non-overlapping conditions hold
satisfies

ai,j = 1 ⇐⇒ ai+2,j = 1 for 0 ≤ i ≤ 1, 0 ≤ j ≤ 31. (8)
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4 Constraining the possible liftings of A to G

For each A chosen according to the procedure of Section 3, we wish to determine whether A is the
image of a difference set D in G. In terms of group ring elements, we wish to know if there is an
element B in Z[H] with all nonzero coefficients in {−1, 1} for which

D = A

(
1 + x32

2

)
+ B

(
1− x32

2

)
(9)

is a difference set in G. In terms of coefficient arrays, the element D defined in (9) is given by

D =

0 . . . . . . 31 32 . . . . . . 63


0
A+B

2

A−B
2

1
2
3

, (10)

so the elements of the coefficient arrays D, A, B are related via

count di,j di,j+32 ai,j bi,j
36 0 0 0 0

64
0 1 1 −1
1 0 1 1

28 1 1 2 0

There are 36 + 28 = 64 elements of B with a coefficient of 0, corresponding to elements in A
with coefficients 0 or 2, which leaves 64 elements of B whose coefficients lie in {−1, 1}. Therefore
for each A determined in Section 3, there are 264 choices of B, each of which determines a potential
difference set D in G. This large search size, which is infeasible even for a single array A, moti-
vates imposing structure on A and constraining coefficients of B in order to bring the search into
a feasible range.

Define a homomorphism φ from G to the multiplicative group of 4×4 complex matrices by

φ : x 7→ X =


ξ 0 0 0
0 ξ−17 0 0
0 0 −ξ 0
0 0 0 −ξ−17

 , y 7→ Y =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , ξ = e2πi/64. (11)

φ is one of 8 irreducible representations of degree 4 of G. Extend φ linearly to elements of the
group ring Z[G]. For group ring element

B =
∑
i,j

bi,jx
jyi,

of Z[H], with corresponding coefficient array (bi,j), we then have
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φ(B) =
∑
i,j

bi,jX
jY i. (12)

To guarantee a difference set D, we require B to satisfy

φ(B)φ(B)
T

= 64I4×4. (13)

For further information regarding the representation theory involved in this stage, and an ex-
planation of how (9) and (13) guarantee a difference set D in G, see [4].

B has exactly 64 nonzero entries, so by (12) we see that φ(B) is a sum of 64 4×4 complex
matrices. For B having coefficient array (bi,j), we calculate φ(B) explicitly from (11) and (12) as
the following sum of 32 4×4 complex matrices:

φ(B) =

31∑
j=0


b0,jξ

j b1,jξ
j b2,jξ

j b3,jξ
j

b3,jξ
−17j b0,jξ

−17j b1,jξ
−17j b2,jξ

−17j

b2,j(−ξ)j b3,j(−ξ)j b0,j(−ξ)j b1,j(−ξ)j
b1,j(−ξ)−17j b2,j(−ξ)−17j b3,j(−ξ)−17j b0,j(−ξ)−17j

 . (14)

Numerical exploration in MatLab led us to believe it would be advantageous to additionally
impose the following symmetry constraints on B:

b2,j = −b0,j and b3,j = b1,j . (15)

Given the constraint (15), set

uj = b0,j

vj = b1,j ,
(16)

and define length 32 sequences

U = (uj)

V = (vj)

with entries in {−1, 0, 1}. Then the coefficient array B is given by

B =


. . . U . . .
. . . V . . .
. . . −U . . .
. . . V . . .

 . (17)

The constraints in (15) can always be satisfied because of the observation made in (8). Under
these constraints we have reduced the number of choices of B elements from 264 to 232 for any

given A. Moreover, these constraints simplify the structure of the resulting product φ(B)φ(B)
T

,
as we now describe.

Define sums
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U1 =

31∑
j=0

ujξ
j , U2 =

31∑
j=0

ujξ
−17j , U3 =

31∑
j=0

uj(−ξ)j , U4 =

31∑
j=0

uj(−ξ)−17j ,

V1 =
31∑
j=0

vjξ
j , V2 =

31∑
j=0

vjξ
−17j , V3 =

31∑
j=0

vj(−ξ)j , V4 =
31∑
j=0

vj(−ξ)−17j .

(18)

Then, from (14), (15) and (16) we have

φ(B) =


U1 V1 −U1 V1
V2 U2 V2 −U2

−U3 V3 U3 V3
V4 −U4 V4 U4

 , (19)

and direct calculation gives

φ(B)φ(B)
T

= 2


|U1|2+|V1|2 0 −U1U3 + V1V3 0

0 |U2|2+|V2|2 0 −U2U4 + V2V4
−U1U3 + V1V3 0 |U3|2+|V3|2 0

0 −U2U4 + V2V4 0 |U4|2+|V4|2

 . (20)

We now see the effectiveness of (15) as not only substantially reducing the search size but also

as forcing 8 off-diagonal entries in φ(B)φ(B)
T

to be 0, partially fulfilling the requirements of (13).
We are left to force the remaining 4 off-diagonal elements to be 0 and the 4 diagonal ones to be 64.

5 Search results

Having found a possible structure for A and B, we used MatLab to search for a difference set
consistent with these structures.

As described in Section 3, all choices of g0, g1, g2, g3, g4 in (5), for which the nonzero elements
of the five associated sparse 4×32 arrays do not overlap among themselves and do not fall on the
8 entries of the template that are not equal to 1, give a group ring element A(g0, g1, g2, g3, g4)
satisfying the condition (3). There are millions of such choices for (g0, g1, g2, g3, g4).

However, given a coefficient array A, the corresponding set of possible coefficient arrays B de-
pends only on the set of 1 positions in A, not the positions of the 0 and 2 elements. We therefore
need retain only one example array A for each set of distinct 1 positions. The set of 1 positions
in each possible A repeats every eight columns and every two rows, and so can be represented just
from the 1 positions of the upper left 2×8 block of A. For example, the 2×8 block corresponding
to the array A1 of (7) is

2 1 ∗ ∗ 1 ∗ 1 1
∗ 1 1 ∗ 1 ∗ ∗ 1
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where each * represents either a 0 element or a 2 element. The template forces the upper left
position of the 2×8 block to be 2. We find by computer that the number of such 2×8 blocks with
distinct 1 positions, that arise from at least one choice of parameters g0, g1, g2, g3, g4, is 5,328.

To reduce the number of permissible 2×8 blocks further and to force some regularity within A,
we constrain the 1 positions of A to be equally distributed among the four rows. This is motivated
by the following observation.

Given the form (14) for φ(B), observe that the leading diagonal of φ(B) depends only on row 0
of B, and that the three cyclic shifts of this diagonal depend only on rows 1, 2 and 3 of B respec-
tively. This is because φ(B) is the sum of terms involving a diagonal matrix Xj right multiplied
by a cyclic shift matrix Y i. This motivates limiting the set of A which we consider as possible
images to only those in which the 64 entries 1 in the corresponding coefficient array are equally
distributed among the 4 rows. This ensures that each row of the coefficient array B contains 16
nonzero entries, which in turn ensures that each entry in φ(B) given by (14) is the sum of 16
primitive roots of unity. Imposing this regularity appeared to be a plausible step towards achieving
the overall objective, that the entries of the matrix φ(B) satisfy (13).

This also limits the possible 2×8 blocks to only those which contain exactly four 1 entries in
each of the first and second rows. When we include this additional constraint, the number of 2×8
blocks with distinct 1 positions is reduced to 2,185.

Each of these 2,185 blocks for A gives rise to 232 choices for the corresponding coefficient array
B constrained according to (15). The size of the resulting search is then 2, 185 · 232 ≈ 1013. This
compares with a search size of 5, 328 ·264 ≈ 1023 had we not constrained A to contain equally many
1 entries in each row and not constrained B according to the simplification (15).

For historical accuracy, the following explanation of our search implementation is described in
terms of the 4×4 matrices given in (11), rather than the sums defined in (18).

We begin by pre-calculating and storing numerical representations for each of the 128 4×4 com-
plex matrices of the form XjY i. These are used throughout the search when checking whether the

product φ(B)φ(B)
T

satisfies (13). We select each of the 2,185 2×8 blocks described above, and
repeat the chosen 2×8 block twice vertically and then the resulting 4×8 block 4 times horizontally
to determine the nonzero positions in the 4×32 coefficient array of B.

The first two rows of the coefficient array of B are then exhaustively chosen as suitable length
32 {−1, 0, 1} sequences U and V consistent with the positions of nonzero elements as decided in the
previous step. This amounts to a size 232 search for the 32 nonzero positions in the first two rows
of the coefficient array of B. The last two rows of the coefficient array of B are then set as −U and
V respectively. For each B, we calculate φ(B) as a sum of 64 of the pre-calculated 4×4 complex

matrices using (12) and the product φ(B)φ(B)
T

is then taken numerically. The top leftmost entry
of this product is compared against 64 to within a tolerance of 10−13. If this tolerance is met, we
write the corresponding coefficient array of B to a file.
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The results of the search were immediate in producing hundreds of elements B for which

φ(B)φ(B)
T

has all 4 entries along the main diagonal equal to 64; each B whose top leftmost
entry satisfied the tolerance also had the remaining entries along the diagonal equal to 64. Nearly
all of these lacked zeros in the four locations where they were not forced by the constraint (15) (see

(20)). Nonetheless, the program found three full solutions to the equation φ(B)φ(B)
T

= 64I4×4.
At this point the program was terminated and we began to examine these results.

For each of these solutions, we chose an example parameter set {g0, g1, g2, g3, g4} which produces
an A element from (5) whose 1 positions match the nonzero positions of the coefficient array of B,
and which necessarily satisfies AA(−1) = 64 · 1H + 112 ·H. By combining A and B for each of the
three solutions according to (9) to produce D and subsequently checking DD(−1), we confirmed
that all three A and B combinations produce a difference set. The following is the coefficient array
of B1, which when combined with the coefficient array of A1 from (7) by way of (10), gives the
coefficient array of a difference set D.

B1 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 0 − 0 0 − 0 − − 0 − 0 0 − 0 − + 0 − 0 0 − 0 + + 0 − 0 0 − 0 − −
1 0 − − 0 − 0 0 + 0 + − 0 − 0 0 + 0 − + 0 + 0 0 − 0 + − 0 + 0 0 −
2 0 + 0 0 + 0 + + 0 + 0 0 + 0 + − 0 + 0 0 + 0 − − 0 + 0 0 + 0 + +
3 0 − − 0 − 0 0 + 0 + − 0 − 0 0 + 0 − + 0 + 0 0 − 0 + − 0 + 0 0 −

(21)

We present the other two solutions below:

A(y, xy, x6y3, x2, x3) =

A2 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 2 1 1 2 1 2 0 1 0 1 1 2 1 2 0 1 2 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 2 0 1 0 1 1 2 1 0 0 1 2 1 1 2 1 2 0 1 2 1 1 0 1 0 0 1 0 1 1 0 1
2 2 1 1 0 1 2 2 1 0 1 1 0 1 2 2 1 2 1 1 2 1 0 2 1 0 1 1 2 1 0 2 1
3 0 0 1 2 1 1 2 1 2 0 1 0 1 1 2 1 0 0 1 0 1 1 0 1 2 0 1 2 1 1 0 1

B2 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 0 − − 0 − 0 0 − 0 − − 0 − 0 0 + 0 − − 0 + 0 0 + 0 − − 0 − 0 0 −
1 0 0 − 0 − + 0 − 0 0 + 0 − + 0 − 0 0 − 0 − + 0 + 0 0 − 0 − + 0 −
2 0 + + 0 + 0 0 + 0 + + 0 + 0 0 − 0 + + 0 − 0 0 − 0 + + 0 + 0 0 +
3 0 0 − 0 − + 0 − 0 0 + 0 − + 0 − 0 0 − 0 − + 0 + 0 0 − 0 − + 0 −
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A(y, x2y, x5y3, x2y, x3) =

A3 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 2 1 1 2 1 0 2 1 0 1 1 2 1 0 2 1 2 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 2 1 0 0 1 2 1 1 0 1 0 2 1 2 1 1 2 1 0 2 1 0 1 1 0 1 0 0 1 0 1 1
2 2 1 1 0 1 2 2 1 0 1 1 0 1 2 2 1 2 1 1 2 1 2 0 1 0 1 1 2 1 2 0 1
3 0 1 0 2 1 2 1 1 2 1 0 0 1 2 1 1 0 1 0 0 1 0 1 1 2 1 0 2 1 0 1 1

B3 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 0 − − 0 − 0 0 − 0 − − 0 − 0 0 + 0 − − 0 + 0 0 + 0 − − 0 − 0 0 −
1 0 − 0 0 − 0 − + 0 + 0 0 − 0 − + 0 − 0 0 + 0 + − 0 + 0 0 − 0 + −
2 0 + + 0 + 0 0 + 0 + + 0 + 0 0 − 0 + + 0 − 0 0 − 0 + + 0 + 0 0 +
3 0 − 0 0 − 0 − + 0 + 0 0 − 0 − + 0 − 0 0 + 0 + − 0 + 0 0 − 0 + −

6 Interpretation of solutions using sequence correlations

We began by examining φ(B) for each of the three search solutions. Each is a 4×4 complex matrix
whose entries are sums of 16 primitive 64th roots of unity, as defined in (18) (see (19)). The two
solutions (B1 and B3) which at the outset exhibited the most similarity, have the following con-
nection: the four entries in each column of φ(B) comprise sums over the same 16 roots of unity,
regardless of whether the sum in (18) is defined using ξ or ξ−17. This we thought interesting, but
not necessary as the third example does not exhibit this relationship. This lack of consistency led
us to look more closely for answers within B, rather than φ(B). We were eventually able to explain
all three solutions via the autocorrelations of each of the sequences U and V .

Definition 2. For a real sequence A = (a0, a1, . . . , an−1) of length n, the negacyclic autocorrelation
at shift w is

NA(w) =

n−1−w∑
j=0

ajaj+w −
n−1∑

j=n−w
ajaj+w−n for 0 ≤ w < n.

Definition 3. Real sequences A = (aj), B = (bj) of length n form a negacyclic Golay pair if

NA(w) +NB(w) = 0 for w 6= 0.

Definition 4. For a real sequence A = (a0, a1, . . . , an−1) of length n, define the negacyclic shift by
v places as the sequence (bj) given by

bj =

{
aj−v for j ≥ v
−an+j−v for j < v

Each row of the coefficient array of B is a ternary sequence (having elements from {−1, 0, 1})
of length 32 as shown in (17), with exactly 16 nonzero elements (as described in Section 5). Using
a symbolic algebra package we tested various relationships between the rows of B to find that:
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Observation 5. For each of the three solutions found for B, the sequences U = (uj) and V = (vj)
defined in (17) form a ternary negacyclic Golay pair.

Recall that the search produced many arrays B for which the diagonal entries of φ(B)φ(B)
T

satisfy (13), yet very few of these B gave rise to a full solution to (13). This suggested that perhaps
there was something special about those U and V sequences (apart from just forming negacyclic
Golay pairs) which forces the resulting φ(B) to fully satisfy (13). We therefore worked to find some
extra relationships between the sequences U and V corresponding to the three full solutions. In
doing so we were led to more closely inspect the autocorrelation vectors corresponding to each U
and V pair. The following autocorrelation vectors correspond to U and V from B1 in (21).

NU (w) : (16 2 0 4 0 2 0 0 0 −4 0 2 0 0 0 −2 0 2 0 0 0 −2 0 4 0 0 0 −2 0 −4 0 −2)

NV (w) : (16 −2 0 −4 0 −2 0 0 0 4 0 −2 0 0 0 2 0 −2 0 0 0 2 0 −4 0 0 0 2 0 4 0 2)

0 ≤ w < 32

We see that the negacyclic autocorrelation of each of U and V for this first solution (along with
the two other solutions) is 0 for all even w 6= 0. In light of this, we next separate the sequences
and their autocorrelations into odd and even indices in order to gain further insight.

Definition 6. For a real sequence A = (a0, a1, . . . , an−1) of length n, define the even and odd
negacyclic autocorrelation at shift w by

NEA(w) =

n−1−w∑
j=0
j even

ajaj+w −
n−1∑

j=n−w
j even

ajaj+w−n, 0 ≤ w < n

NOA(w) =
n−1−w∑
j=0
j odd

ajaj+w −
n−1∑

j=n−w
j odd

ajaj+w−n, 0 ≤ w < n

so that

NA(w) = NEA(w) +NOA(w), 0 ≤ w < n. (22)

Observe the following even and odd autocorrelation vectors for U and V (again from B1 in
(21)):

NEU (w) : (8 2 2 0 0 2 0 0 0 −4 0 0 0 0 2 0 0 2 −2 0 0 −2 0 0 0 0 0 0 0 −4 −2 0)

NOU (w) : (8 0 −2 4 0 0 0 0 0 0 0 2 0 0 −2 −2 0 0 2 0 0 0 0 4 0 0 0 −2 0 0 2 −2)

NEV (w) : (8 0 2 −4 0 0 0 0 0 0 0 −2 0 0 2 2 0 0 −2 0 0 0 0 −4 0 0 0 2 0 0 −2 2)

NOV (w) : (8 −2 −2 0 0 −2 0 0 0 4 0 0 0 0 −2 0 0 −2 2 0 0 2 0 0 0 0 0 0 0 4 2 0)

0 ≤ w < 32
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In the above example we find that the even negacyclic autocorrelation of U together with the
odd negacyclic autocorrelation of V sum to zero for all nonzero shifts w, and similarly for U and
V replaced by V and U . This stronger property of U and V is exhibited in all three solutions.
With the following lemma, we outline some relationships which are a consequence of taking the
transformation of a sequence and comparing its autocorrelation to the original. These will be sub-

sequently used to explain how the properties of U and V described above ensure that φ(B)φ(B)
T

,
as calculated in (20), satisfies the required property (13).

Lemma 7. Let A = (a0, a1, . . . , a2m−1) be a real sequence of length 2m, and let B = (b0, b1, . . . , b2m−1)
be a transformation of A as specified below. Then NA(w), NEA(w), NOA(w) transform as shown:

NB(w) NEB(w) NOB(w)

bj = a2m−1−j (reverse) NA(w)

{
NOA(w) for w even

NEA(w) for w odd

{
NEA(w) for w even

NOA(w) for w odd

bj = (−1)jaj (change alternate sign) (−1)wNA(w) (−1)wNEA(w) (−1)wNOA(w)

(negacyclically shift v places, v odd) NA(w) NOA(w) NEA(w)

Lemma 7 can be proved by straightforward manipulation of sums, similar to the proof of Lemma
8 below.

Lemma 8. For a real sequence A = (a0, a1, . . . , an−1) and for complex τ satisfying τn = −1,∣∣∣∣∣∣
n−1∑
j=0

ajτ
j

∣∣∣∣∣∣
2

=
n−1∑
w=0

NA(w)τw.

Proof. ∣∣∣∣∣∣
n−1∑
j=0

ajτ
j

∣∣∣∣∣∣
2

=

n−1∑
j=0

ajτ
j
n−1∑
k=0

akτk

=

n−1∑
k=0

n−1∑
j=0

ajakτ
j−k

=
n−1∑
k=0

k−1∑
j=0

ajakτ
j−k +

n−1∑
j=k

ajakτ
j−k


=

n−1∑
k=0

− k−1∑
j=0

ajakτ
j−k+n +

n−1∑
j=k

ajakτ
j−k

 by τn = −1

put w = j − k + n put w = j − k

= −
n−1∑
k=0

n−1∑
w=n−k

ak+w−nakτ
w +

n−1∑
k=0

n−1−k∑
w=0

ak+wakτ
w

13



switch order of summation

= −
n−1∑
w=0

n−1∑
k=n−w

ak+w−nakτ
w +

n−1∑
w=0

n−1−w∑
k=0

ak+wakτ
w

=
n−1∑
w=0

(
n−1−w∑
k=0

akak+w −
n−1∑

k=n−w
akak+w−n

)
τw

=
n−1∑
w=0

NA(w)τw.

The following result shows how the diagonal entries of φ(B)φ(B)
T

can be made to satisfy (13).

Corollary 9. Let U = (uj) and V = (vj) be length 32 sequences forming a ternary negacyclic
Golay pair, each with exactly 16 nonzero entries. The sums U1 to U4 and V1 to V4 defined in (18)
satisfy |Uj |2 + |Vj |2 = 32 for j = 1, 2, 3, 4.

Proof. We have

|U1|2 + |V1|2 =

∣∣∣∣∣∣
31∑
j=0

ujξ
j

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
31∑
j=0

vjξ
j

∣∣∣∣∣∣
2

,

=
31∑
w=0

(NU (w) +NV (w)) ξw by Lemma 8 with n = 32 and τ = ξ

= NU (0) +NV (0) U , V form a negacyclic Golay pair

= 16 + 16 = 32 by assumption.

|U3|2 + |V3|2 =

∣∣∣∣∣∣
31∑
j=0

uj(−ξ)j
∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
31∑
j=0

vj(−ξ)j
∣∣∣∣∣∣
2

,

=
31∑
w=0

(NU (w) +NV (w)) (−ξ)w by Lemma 8 with n = 32 and τ = −ξ

= 32 as above.

|U2|2 + |V2|2 =

∣∣∣∣∣∣
31∑
j=0

ujζ
j

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
31∑
j=0

vjζ
j

∣∣∣∣∣∣
2

where ζ = ξ−17,

=
31∑
w=0

(NU (w) +NV (w)) ζw by Lemma 8 with n = 32 and τ = ζ

= 32.
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|U4|2 + |V4|2 =

∣∣∣∣∣∣
31∑
j=0

uj(−ζ)j

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
31∑
j=0

vj(−ζj)

∣∣∣∣∣∣
2

where ζ = ξ−17,

=
31∑
w=0

(NU (w) +NV (w)) (−ζ)w by Lemma 8 with n = 32 and τ = −ζ

= 32.

This completes our examination of the diagonal entries of φ(B)φ(B)
T

and we will now examine
how each of the off-diagonal entries can be made to satisfy (13).

In the following proposition we start with a negacyclic Golay pair S, T and construct a second
negacyclic Golay pair U , V of twice the length having additional properties. We shall show that

these additional properties are sufficient to force the off-diagonal entries of φ(B)φ(B)
T

to satisfy
(13).

Proposition 10. Let S = (sj), T = (tj) be length m real sequences forming a negacyclic Golay pair.
Let U = (uj) be the length 2m interleaving of S and T (u2j = sj, u2j+1 = tj, for 0 ≤ j ≤ m − 1)
and let V = (vj) be the negacyclic shift by an odd number of places of the length 2m sequence
((−1)ju2m−1−j). Then

(i) NU (w) = NV (w) = 0 for even w 6= 0

(ii) NEU (w) +NOV (w) = 0 for w 6= 0, and
NOU (w) +NEV (w) = 0 for w 6= 0.

In particular, adding the relations in (ii) shows by (22) that U , V form a length 2m negacyclic
Golay pair.

Proof. (i) For integer y 6= 0,

NU (2y) =

2m−1−2y∑
j=0

ujuj+2y −
2m−1∑

j=2m−2y
ujuj+2y−2m,

=

m−1−y∑
j=0

u2ju2j+2y −
m−1∑
j=m−y

u2ju2j+2y−2m

+

m−1−y∑
j=0

u2j+1u2j+1+2y −
m−1∑
j=m−y

u2j+1u2j+1+2y−2m,

by separating into even and odd indices,

=

m−1−y∑
j=0

sjsj+y −
m−1∑
j=m−y

sjsj+y−m
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+

m−1−y∑
j=0

tjtj+y −
m−1∑
j=m−y

tjtj+y−m,

by definition of U ,

= NS(y) +NT (y)

= 0 because S, T form a negacyclic Golay pair (23)

and from Lemma 7, NV (2y) = (−1)2yNU (2y) = 0.

(ii) From Lemma 7,

NEU (w) +NOV (w) =

{
NEU (w) +NOU (w) for w even

NEU (w)−NEU (w) for w odd

=

{
NU (w) for w even by (22)

0 for w odd

= 0 for w 6= 0 by (23)

and NOU (w) +NEV (w) =

{
NOU (w) +NEU (w) for w even

NOU (w)−NOU (w) for w odd

= 0 for w 6= 0 as above.

Proposition 10 captures the relationship which is shared by each U and V pair from our three
search solutions. The following examples all use U = (uj) and V = (vj) from B1 in (21).

U = (uj) = (0 − 0 0 − 0 − − 0 − 0 0 − 0 − + 0 − 0 0 − 0 + + 0 − 0 0 − 0 − −) ,

S = (u2j) = (0 0 − − 0 0 − − 0 0 − + 0 0 − −) ,

T = (u2j+1) = (− 0 0 − − 0 0 + − 0 0 + − 0 0 −) ,

NS(w) : (8 2 0 0 0 0 0 2 0 −2 0 0 0 0 0 −2) ,

NT (w) : (8 −2 0 0 0 0 0 −2 0 2 0 0 0 0 0 2) ,

and NS(w) +NT (w) = 0 for all w 6= 0, therefore S and T form a negacyclic Golay pair.

This shows that U is the interleaving of two length 16 sequences which themselves form a
negacyclic Golay pair. We now show that V is a transformation of U as described above.

(u31−j) = (− − 0 − 0 0 − 0 + + 0 − 0 0 − 0 + − 0 − 0 0 − 0 − − 0 − 0 0 − 0)

(−1)j(u31−j) = (− + 0 + 0 0 − 0 + − 0 + 0 0 − 0 + + 0 + 0 0 − 0 − + 0 + 0 0 − 0)

and negacyclically shifting (−1)j(u31−j) by 17 places gives:

(0 − − 0 − 0 0 + 0 + − 0 − 0 0 + 0 − + 0 + 0 0 − 0 + − 0 + 0 0 −) ,

which equals the sequence V taken directly from the second row of B1 in (21).
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This completes the demonstration that V is a transformation of U , which itself is the interleaving
of two sequences which form a negacyclic Golay pair. We previously observed that these sequences
U ,V each individually satisfies the property that their negacyclic autocorrelation is 0 for even
shifts w 6= 0. Furthermore, we showed that this pair U ,V has the properties described directly
after Definition 6, involving relationships between the even and odd negacyclic autocorrelations of
the sequences. We now see that these properties are guaranteed by the single condition involving
S and T as described in Proposition 10. We will soon demonstrate how this second relationship
relates to condition (13).

Lemma 11. For a real sequence A = (a0, a1, . . . , an−1), and for complex τ satisfying τn = −1,n−1∑
j=0

ajτ
j

(n−1∑
k=0

(−1)kakτk

)
=

n−1∑
w=0

(NEA(w)−NOA(w))τw.

Proof. Following the method of the proof for Lemma 8 gives

LHS =

n−1∑
w=0

(
n−1−w∑
k=0

(−1)kakak+w −
n−1∑

k=n−w
(−1)kakak+w−n

)
τw

=

n−1∑
w=0


n−1−w∑

k=0
k even

akak+w −
n−1∑

k=n−w
k even

akak+w−n


−

n−1−w∑
k=0
k odd

akak+w −
n−1∑

k=n−w
k odd

akak+w−n


 τw

=

n−1∑
w=0

(NEA(w)−NOA(w))τw.

In the following corollary, we use Lemma 11 and Proposition 10 to show how to force off-diagonal

entries of φ(B)φ(B)
T

in (20) to be zero.

Corollary 12. Let S = (sj) and T = (tj) be length 16 sequences forming a negacyclic Golay pair,
and U = (uj) be the interleaving of S and T . Let V = (vj) be the negacyclic shift by an odd number
of places of the length 32 sequence ((−1)ju31−j). The sums U1 to U4 and V1 to V4 defined in (18)
satisfy −UjUj+2 + VjVj+2 = 0 for j = 1, 2.
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Proof.

−U1U3 + V1V3 = −

 31∑
j=0

ujξ
j

( 31∑
k=0

(−1)kukξk

)
+

 31∑
j=0

vjξ
j

( 31∑
k=0

(−1)kvkξk

)

=
31∑
w=0

(−NEU (w) +NOU (w) +NEV (w)−NOV (w))ξw by Lemma 11 with n = 32 and τ = ξ

=
31∑
w=0

((NOU (w) +NEV (w))− (NEU (w) +NOV (w)))ξw

= NOU (0) +NEV (0)−NEU (0)−NOV (0) by Proposition 10 (ii)

= (NOU (0)−NOV (0))− (NEU (0)−NEV (0))

= 0 by construction of V from U .

−U2U4 + V2V4 = 0 by the same argument, with ζ = ξ−17 replacing ξ.

Corollary 13. Let S, T be a ternary length 16 negacylic Golay pair having a total of 16 nonzero
entries, and U = (uj) be the interleaving of S and T . Let V = (vj) be the negacyclic shift by an odd
number of places of the length 32 sequence ((−1)j(u31−j). Form the coefficient array of an element

B from U and V by (17). Then φ(B) satisfies the equation φ(B)φ(B)
T

= 64I4×4.

Proof. Because B satisfies (17), φ(B)φ(B)
T

has the form given in (20) with U1 to U4 and V1 to V4

defined as in (18). This guarantees that eight entries of φ(B)φ(B)
T

are zero, matching the eight
corresponding entries in 64I4×4 regardless of which S and T are used to build U . This leaves eight
remaining entries, four on the diagonal and four off it.

Since U is constructed by interleaving the sequences of a ternary length 16 negacyclic Golay
pair, and V is constructed as the transformation of U specified above, then by Proposition 10 U ,
V form a ternary length 32 negacyclic Golay pair. Since S, T have a total of 16 nonzero entries, so

does U . Then by construction, so does V . By Corollary 9 the four diagonal entries of φ(B)φ(B)
T

are 64 and by Corollary 12 the four remaining off-diagonal entries are 0.

Corollary 14. Let B be an element formed as in Corollary 13. Suppose there is a parameter set
(g0, g1, g2, g3, g4) which produces an element A from (5) whose coefficient array has its 1 positions
matching the nonzero positions of the coefficient array of B. The element D formed from A and B
as in (9) is a (256, 120, 56) difference set in the group G.

This concludes the explanation for how U and V with the appropriate properties give the coef-
ficient array of an element B, where B satisfies the matrix condition in (13), and how this can be
combined with a suitable element A to guarantee a difference set D in the group G.
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7 Construction of a difference set in G by hand

We now understand how to build a coefficient array B from sequences U and V so that the matrix

φ(B)φ(B)
T

satisfies (13), which ensures that D built by (9) (using any A whose 1 positions match
the nonzero positions in B) is a difference set in G. Our next objective was to construct a difference
set by hand using a recursive implementation of the construction described in Proposition 10 to
produce suitable sequences U and V .

By Corollary 13, we require a (length 32) sequence U = (uj) which is the interleaving of the
sequences of a ternary length 16 negacyclic Golay pair having a total of 16 nonzero entries and
which has a repetitive structure consistent with our five parameter function for A in (5). To achieve
this, we recursively implement an interleaving of negacyclic Golay pairs according to Proposition
10 (which produces a negacyclic Golay pair of length 2m from one of length m), while taking care
that U contains exactly 16 nonzero entries and that U and V give a B in (17) which achieves a
repetitive pattern consistent with (5). We demonstrate a recursive construction beginning with
trivial length 1 sequences, satisfying both of these conditions by adding an extra step: to interleave
intermediate sequences with zeros at a specific recursive step. We demonstrate this process below.

Let S1 and T1 be a length 1 negacyclic Golay pair as follows,

S1 = (+) and T1 = (+).

Let S2 be the interleaving of S1 and T1,

S2 = (+ +) ,

and, as in Proposition 10, let T2 be the negacyclic shift by 1 place of the reversal of the sequence
S2 whose odd elements have alternated signs, so that

T2 = (+ +) .

S2 and T2 form a negacyclic Golay pair. Continuing this process recursively, we will always take
the negacylic shift in Proposition 10 as a shift by exactly 1 place, which gives

S3 = (+ + + +) , and

T3 = (+ + − +) .

S3 and T3 form a negacyclic Golay pair. Knowing that we need this process to produce two
ternary length 32 sequences, each with exactly 16 nonzero entries, we will now interleave the
sequences S3 and T3 with zeros as follows.

S4 = (0 + 0 + 0 + 0 +) , and

T4 = (0 + 0 + 0 − 0 +) .
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S4 and T4 form a negacyclic Golay pair, because S3 and T3 do. Continuing the recursive
interleaving and transformation process according to Proposition 10 gives

S5 = (0 0 + + 0 0 + + 0 0 + − 0 0 + +) ,

T5 = (0 + − 0 0 − − 0 0 + − 0 0 + − 0) .

S5 and T5 form a ternary length 16 negacyclic Golay pair having a total of 16 nonzero elements.
We may therefore form U = S6 and V = T6 according to Corollary 13:

S6 = (0 0 0 + + − + 0 0 0 0 − + − + 0 0 0 0 + + − − 0 0 0 0 + + − + 0) , and

T6 = (0 0 − − − + 0 0 0 0 + − − + 0 0 0 0 − − − − 0 0 0 0 − − − + 0 0) ,

and then form the coefficient array of B from U and V as in (17) to give

B4 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 0 0 0 + + − + 0 0 0 0 − + − + 0 0 0 0 + + − − 0 0 0 0 + + − + 0
1 0 0 − − − + 0 0 0 0 + − − + 0 0 0 0 − − − − 0 0 0 0 − − − + 0 0
2 0 0 0 − − + − 0 0 0 0 + − + − 0 0 0 0 − − + + 0 0 0 0 − − + − 0
3 0 0 − − − + 0 0 0 0 + − − + 0 0 0 0 − − − − 0 0 0 0 − − − + 0 0

.

By Corollary 13, we have φ(B4)φ(B4)
T

= 64I4×4. Moreover, the nonzero positions of the B4

repeat every eight columns and two rows. We must now choose a parameter set (g0, g1, g2, g3, g4)
which under (5) gives an element A4 whose 1 positions match these well-behaved nonzero positions
of the coefficient array of B4. We use the parameter set (y, x6y, xy3, x2y, x7), but stress that any
parameter set giving an element A whose 1 positions in the corresponding coefficient array are
identical to those in the following will suffice.

A(y, x6y, xy3, x2y, x7) =

A4 =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31


0 2 0 0 1 1 1 1 2 0 0 2 1 1 1 1 2 2 0 2 1 1 1 1 0 0 0 0 1 1 1 1 0
1 2 0 1 1 1 1 0 0 0 2 1 1 1 1 0 2 2 2 1 1 1 1 0 2 0 0 1 1 1 1 0 0
2 2 2 0 1 1 1 1 0 0 2 2 1 1 1 1 0 2 2 2 1 1 1 1 2 0 2 0 1 1 1 1 2
3 0 0 1 1 1 1 0 2 2 2 1 1 1 1 0 0 0 2 1 1 1 1 0 0 2 0 1 1 1 1 0 2

.

Now by Corollary 14, the element D = A4

(
1+x32

2

)
+ B4

(
1−x32

2

)
is a (256, 120, 56) difference

set in the group G.
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